Instrument Acronym Soup

Instrument	Application	Transitions	Conc. range	Sample prep			
Atomic Spectrosc		Transitions	conc. range	Sample prep			
	Elemental	Valor on alastrona	100	A 0 4 F Clharad			
Flame Atomic		Valence electrons	100s ppb	Aqueous, 0.45 um filtered			
Absorption	concentration						
spectroscopy							
(Flame AA)	71 . 1	77.1	*** 1	A 0.45 Cl. 1			
Inductively	Elemental	Valance electrons	High ppt	Aqueous, 0.45 um filtered			
coupled plasma-	concentration						
optical emission							
spectroscopy							
(ICP-OES)		_					
Inductively	Elemental	Mass to charge	~50 ppb/ low	Aqueous, 0.45 um filtered			
coupled plasma-	concentration	ratio	ppt				
mass							
spectrometry							
(ICP-MS)							
X-Ray Spectrosco		T					
Handheld X-ray	Elemental	X-rays generated	~100 ppm	Solid			
fluorescence	concentration	from inner-shell					
(XRF)		electron ejection					
Bulk XRF			~10 ppm	Solids as pressed pellets			
X-ray diffraction	Crystal structure:	Scattering from	~5% by mass	Solid: powder or single crystal			
(XRD)	Minerals	crystal lattice		Compounds must be crystalline			
Molecular spectro	oscopy						
UV-Vis	Colors	Valence electrons	Depends on	Aqueous			
			molar				
			absorbtivity				
Fluorescence	Colors	Valence electrons	Lower than	Aqueous			
			UV-Vis	_			
Vibrational Spect	Vibrational Spectroscopy						
Fourier	Chemical	Molecular	Depends on	Solids: films or pellets			
transform-	moieties:	vibrations and	functional				

Infrared spectroscopy (FT-IR)	Plastics, minerals	rotations	groups probed	
Raman scattering	Chemical moieties: Plastics, minerals	Inelastic or Raman scattering		More flexible
Chromatography				
Gas chromatography- mass spectrometry (GC-MS)	Odors	Volatility, column sorption		Solid for headspace
High performance-liquid chromatography (HPLC)	Flavors	Partitioning b/w stationary and mobile phase		Aqueous, 0.45 um filtered
Electron Microsco	py			
Scanning electron microscopy (SEM)	Topographic imaging	Backscattering electrons		Conductive solids or carbon coated for conductivity
Electron microprobe (EMPA)	Elemental composition	Photoelectric effect- measure energy of escaping x-rays		Conductive solids or gold coated samples Samples must be flat
Transmission electron microscopy (TEM)	Density, diffraction, particle size,	Transmitted electrons		Prepared on a ~3mm grid, must be very thin (<100s nm thick)
Other				
Nuclear Magnetic Resonance (NMR)		Nuclear spin		

Technique overview

List some techniques you might use to address your project in class OR questions you might address for your project with the listed technique:

iistea teeiiiiiqae.	
1. Metals	
2. Plastics	
3. Calories or colors	
4. Electron microscopy	
5. CYOA 1	
5. CYOA 2	
5. CYOA 3	
6. Separations	